Skip to contents

Draw heatmap by coordinates.

Usage

e_heatmap(
  e,
  y,
  z,
  bind,
  name = NULL,
  coord_system = "cartesian2d",
  rm_x = TRUE,
  rm_y = TRUE,
  calendar = NULL,
  ...
)

e_heatmap_(
  e,
  y,
  z = NULL,
  bind = NULL,
  name = NULL,
  coord_system = "cartesian2d",
  rm_x = TRUE,
  rm_y = TRUE,
  calendar = NULL,
  ...
)

Arguments

e

An echarts4r object as returned by e_charts or a proxy as returned by echarts4rProxy.

y, z

Coordinates and values.

bind

Binding between datasets, namely for use of e_brush.

name

name of the serie.

coord_system

Coordinate system to plot against, takes cartesian2d, geo or calendar.

rm_x, rm_y

Whether to remove x and y axis, only applies if coord_system is not set to cartesian2d.

calendar

The index of the calendar to plot against.

...

Any other option to pass, check See Also section.

Examples

v <- LETTERS[1:10]
matrix <- data.frame(
  x = sample(v, 300, replace = TRUE),
  y = sample(v, 300, replace = TRUE),
  z = rnorm(300, 10, 1),
  stringsAsFactors = FALSE
) |>
  dplyr::group_by(x, y) |>
  dplyr::summarise(z = sum(z)) |>
  dplyr::ungroup()
#> `summarise()` has grouped output by 'x'. You can override using the `.groups`
#> argument.

matrix |>
  e_charts(x) |>
  e_heatmap(y, z, itemStyle = list(emphasis = list(shadowBlur = 10))) |>
  e_visual_map(z)
# calendar dates <- seq.Date(as.Date("2017-01-01"), as.Date("2018-12-31"), by = "day") values <- rnorm(length(dates), 20, 6) year <- data.frame(date = dates, values = values) year |> e_charts(date) |> e_calendar(range = "2018") |> e_heatmap(values, coord_system = "calendar") |> e_visual_map(max = 30)
# calendar multiple years year |> dplyr::mutate(year = format(date, "%Y")) |> group_by(year) |> e_charts(date) |> e_calendar(range = "2017", top = 40) |> e_calendar(range = "2018", top = 260) |> e_heatmap(values, coord_system = "calendar") |> e_visual_map(max = 30)
# map quakes |> e_charts(long) |> e_geo( boundingCoords = list( c(190, -10), c(180, -40) ) ) |> e_heatmap( lat, mag, coord_system = "geo", blurSize = 5, pointSize = 3 ) |> e_visual_map(mag)
# timeline library(dplyr) axis <- LETTERS[1:10] df <- expand.grid(axis, axis) bind_rows(df, df) |> mutate( values = runif(n(), 1, 10), grp = c( rep("A", 100), rep("B", 100) ) ) |> group_by(grp) |> e_charts(Var1, timeline = TRUE) |> e_heatmap(Var2, values) |> e_visual_map(values)